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This report covers the research work performed for the period
starting September 1991 and ending February 1992. An investigationof the
differentphysical contributions in the displacement fieldderived from the
variationally asymptotical analysis is performed. The analytical approach
along with the derived displacement field and stiffnesscoefficientsfor a
generally anisotropic thin-walled beam is presented in detail in Ref.1. A
copy is attached in the Appendix forconvenience.

Significance of Out-of.plane Warping

The variationallyasymptotical approach does not require an a priori
assumed displacement fieldand the warping function emerges as natural
result. It follows an iterative process. The displacement function
corresponding to the zeroth order approximation is obtained firstby keeping
the leading order terms in the energy functional. A set of successive
corrections is added and the associated energy functional is determined.
Corrections generating terms of the same order in the energy functional as
previously obtained, are kept. The process is terminated when the new
contributions generate terms of smaller order. The displacement field
converges to the followingexpression:

I" e e

V1 = V1(x } - ?:](s}U2(x } - z(s)V 3 4- G(s}q_ [x)
e i# i#

+ gl(s)Ul(x) + g2(s)U2(x) + 9_(s)U_(x)

.._ c_V2 -- U 2 {X) + U 3 (x}"_ + (p(x}r n

(1)

The axial displacement is denoted by V l while v2 and v denote the
displacement along the tangent and normal to the cross section mid-

surface,respectivelyas shown in Fig.1.The average displacement over the
cross section along the x,y and z Cartesian coordinate system is denoted
by U1(x), U2(x) and U3(x), respectively. The cross sectional rotation is

denoted by ¢(x).The underlined terms in Eq.(1)represent the extension and

bending-related warping. These new terms emerges naturally in addition

to the classical torsional-related warping G(s) Of. They are strongly



influenced by the material's anisotropy and vanish for materials that are
either orthotropic or whose properties are antisymmetric relative to middle
surface of the cross section wall. These out-of-plane warping functions
were derived earlier and presented in Ref.2.

z

,u 2

Fig.1 Coordinate system

The contribution of out-of-plane warping was considered recently by
Kosmatka [3 ]. Local in-plane deformations and out-of-plane warping of the
cross section were expressed in terms of unknown functions. These
functions were assumed to be proportional to the axial strain, bending
curvature and twist rate within the cross section and were determined
using a finite element modeling. In our formulation, the out-of-plane
warping is shown to be proportional to the axial strain, bending curvature
and twist rate. Moreover, the functions associated with each physical
behavior are expressed in closed-form by gI(s) for the axial strain, g2(s) and
g3(s) for the bending curvatures and G(s) for the twist rate.

An illustration of their effect appears in Figs. 2 and 3 where the bending
slope in a cantilevered beam is plotted along the span. The beam is
subjected to a unit bending load at the tip and has a rectangular cross
section with [1516 (Fig.2) and [30]6 (Fig.3) layup. Two types of predictions are

compared to the experimental results [4, 5 ]. In the first, the torsional-
related warping is considered only while in the second the contribution of
bending-related warping is included. Extension-related warping is
negligible for this construction. Neglecting bending-related warping leads
to significant errors in predictions for this case.

Shear Deformation Coition

A similar behavior to the one illustrated in Figs. 2 and 3 was found in
the theory of Ref. 5 when the shear deformation contribution is neglected.
This may indicate that the out-of-plane warping due to bending includes
implicitly the shear deformation contribution. In the theory of Ref.5 the
cross section stiffness coefficients are predicted from a finite element
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simulation. The theory is not restrictedto thin-walled configurations. In
order to assess the similaritybetween the shear deformation contribution
and the out-of-planewarping, the present theory and the numerical work of
Ref. 5 are applied to the prediction of the deflectioncurve in a cantilevered
beam made of graphite/epoxy material and subjected to a transverse tip
load of 1 lb.The beam has a [1516 layup with a rectangular cross section.

The geometry and mechanical properties are similar to those of Ref. 5 and
are provided in Table I.

Table I. Cantilever Geometry and Properties

Ply Thickness = 0.005 in

Width = 0.923 in.

Depth = 0.50 in.

Ell = 20.6Msi.

E22 = E33 = 1.42Msi.

G12 =G13 = 0.87 Msi.

G23 = 0.696 Msi

_12 = _13 = 0.30

_)23= 0.34

Figure 4 shows a similar behavior suggesting that in the present

theory, shear deformation is implicitlyaccounted through bending-related

warping. The prediction of Ref.5 are referred to as Classical when shear

deformation is neglected.Further evidence could be provided by estimating

the equivalent shear deformation strain in the present theory which can be

expressed in terms of the slope of the plane that approximates the cross

sectionwarping. This slope is given by

(2)

where A and Izz denote the cross-sectionalarea and second moment of

area about the z-axis,respectively.A comparison of the shear strain 7xy
over the length of the beam with the predictionof Ref. 5.is shown in Fig. 5.



The shear strain at the fixed end is 4.5924x10 "4 based on Eq.(2) which is

within 2 % of 4.6857x10 "4 calculated on the basis of Ref. 5.
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Fig. 4 Deflection of a [1516 cantilevered beam under unit tip load

Closing Remarks

The variationally asymptotical theory developed pro_des a consistent
means for including the effects of the material's anisotropy in thin-walled
beams. Two issues have been addressed in this progress report. The first, is
concerned with the functional form of in-plane deformation and out-of-

plane warping contributions to the displacement field. The second, is
concerned with the significance of shear deformation effects.

A rigorous proof is provided for the assumed displacement field in
Kosmatka's work [3]. Local in-plane deformations and out-of-plane
warping of the cross section are indeed shown to be proportional to the axial
strain, bending curvature and twist rate within the cross section.
Moreover, their closed form functions are determined.
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The significance of shear deformation in the modeling of laminated
composites was recognized in the early work of Rehfield and was followed
by Chopra et al. by adopting a Timoshenko-type shear deformation
formulation. The displacement field developed in the present work is shown
to include shear deformation through the out-of-plane warping terms. A
closed form expression for the slope of the plane that approximates the
cross section warping is derived and shown to be within 2% of the shear

strain in a cantilever beam problem.
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Theory of Anisotropic Thin-Walled Closed

Cross-Section Beams
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ABSTRACT

A variationally and asymptotically consistent theory is developed in order to derive

the governing equations of anisotropic thin-walled beams with closed sections. The

theory is based on an asymptotical analysis of two-dimensional shell theory. Closed-

form expressions for the beam stiffness coefficients, stress and displacement fields are

provided. The influence of material anisotropy on the displacement field is identified.

A comparison of the displacement fields obtained by other analytical developments

is performed. The stiffness coefficients and static response are also compared with

finite element predictions, closed form solutions and test data.

INTRODUCTION

Elastically tailored composite designs are being used to achieve favorable defor-

mation behavior under a givcn loading environmcnt. Coupling between deformation

modes such as cxtension-twist or bending-twist is crcated by an appropriate selection

of fiber orientation, _tacking sequence and materials. The fundamental mechanism

producing clastic tailoring in compositc beams is a result of their anisotropy. Sev-

eral theories have been developed for the analysis of thin-walled anisotropic beams.

"Professor, Associate Professor, and Graduate Research Assistant, respectively.



A review is provided in Hodges(1990). A basic element in the analytical model-
ing developmentis the derivation of the effectivestiffnesscoefficientsand governing
equations which allows the three-dimensional(3D) state of stressto be recovered
from a one-dimensional(1D) beamformulation. For isotropic or orthotropic materi-
als this is a classicalproblem,which is consideredin a number of text books suchas
Timoshenkoand Goodier(1951),Sokolnikoff (1956),Washizu (1968),Crandall et al.

(1978), Wempner (1981), Gjelsvik (1981), Libai and Simmonds (1988), and Megson

(1990).

For generally anisotropic materials a number of 1D theories have been developed

by Reissner and Tsai (1972), Mansfield and Sobey (1979), Rehfield (1985), Libove

(1988), Rehfield and Atilgan (1989), and Smith and Chopra (1990;1991). A discussion

of these works is provided in the comparison section of this paper.

The objective of this work is to develop a consistent theory for thin-walled beams

made of anisotropic materials. The theory is an asymptotically correct first order

approximation. The accuracy of previously developed theories is assessed by compar-

ing the resulting displacement fields. A comparison of stiffness coefficients and static

response with finite element predictions, dosed form solutions and test data is also

performed.

A detailed derivation of the theory is presented first'. This is followed by a sum-

mary of governing equations. Finally a comparison of results with previously devel-

oped theories is provided.

DEVELOPMENT OF THE ANALYTICAL MODEL

Coordinate Systems

Consider the slender thin-walled elastic cylindrical shell shown in Fig. 1. The

length of the shell is denoted by L, its thickness by h, the radius of curvature of the

middle surface by R and the maximum cross sectional dimension by d. It is assumed

that

d << L h << d h << R (1)

The shell is loaded by external forces applied to the lateral surfaces and at the

ends. It is assumed that the variation of the external forces and material properties

over distances of order d in the axial direction and over distances of ordcr h in the



circumferential direction, is small. The material is anisotropic and its propertiescan
vary in the direction normal to the middle surface.

It is convenientto considersimultaneouslytwo coordinatesystemsfor the descrip-
tion of the state of stressin thin-walledbeams.The first oneis the Cartesiansystem
x, y and z shown in Fig. 1. The axial coordinate is x while y and z are associated

with the beam cross section. The second coordinate system, is the curvilinear system

x, s and _" shown in Fig. 2. The circumferential coordinate s is measured along the

tangent to the middle surface in a counter-clockwise direction whereas _ is measured

along the normal to the middle surface. A number of relationships have a simpler

form when expressed in terms of curvilinear coordinates. A l:elationship between the

two coordinate systems can be established as follows. '

Define the position vector f" of the shell middle surface as

+ y(s)r + z(s)r 

where z=, _, h are unit vectors associated with the cartesian coordinate system x, y

and z. Equations y -- y(s) and z = z(s) define the dosed contour F in the y, z plane.

The no/'mal vector to the middle surface _ has two nonzero components

= + n,(s)r, (2)

The position vector/_ of an arbitrary material point can be written in the form

g = e"+ _ (3)

Equations (2) and (3) establish the relations between the cartesian coordinates x, y,

z and the curvilinear coordinates x, s, c. The coordinate _c lies within the limits

h(s) < <
2 - - 2

The shell thickness varies along the circumferential direction and is denoted by h(s).

The tangent vector _, the normal vector ff and the projection of the position vcctor

Y on l'and fi are expressed in terms of the cartesian and curvilinear coordinates as

_= d_" dy_ dz..

dz. dy £z



dy dz
r, = _. F= _ + z_

dz dy
r_ =_'_=y-r- -

Z -_s58

An asymptotical analysis is used to model the slender thin-walled shell as a beam

with effective stiffnesses. The method follows an iterative process. The displacement

function corresponding to the zeroth-order approximation is obtained first by keeping

the leading order terms in the energy functional. A set of successive corrections is

added to the displacement function and the associated energy functional is deter-

mined. Corrections generating terms of the same order as previously obtained in the

energy functional, are kept. The process is terminated when th4 new contributions

do not generate any additional terms of the same order as previously obtained.

Shell Energy Functional

Consider in a 3D space the prismatic shell shown in Fig. 2. A curvilinear frame x,

s, and _ is associated with the undeformed shell configuration. Values 1, 2 and 3 de-

noting x, s, and _, respectively are assigned to the curvilinear frame. Throughout this

section, Latin superscripts (or subscripts) run from 1 to 3, while Greek superscripts

(or subscripts) run from 1 to 2, unless otherwise stated.

The energy density of a 3D elastic body is a quadratic form of the strains

.°_

U = 5E 'J e_jekz

The material properties are expressed by the Hookean tensor E _jk_. Following classical

shell formulation (Koiter (1959), and Sanders (1959)) the through-the-thickness stress

components a i3 are considerably smaller than the remaining components a °_ thercfore

_3 = 0 (4)

The strains can be written as

eo_ = %_ + _po_ (5)

where 7o_ and po_ represent the in-plane strain componcnts and the change in the

shell middle surface curvatures, respectively. For a cylindrical shell these are related

to the displacement variables by
0vl

711 = Ox



Ovx 0_

27_2= 0-'T+ 0--T

0v2 v

_22= 0--T+
02v

pit = Oz'--_ (6)

0% -_1. _sOV_ Or2 )p12= OsOz+ - 3-ffiz

02v 0 .v2)

where vl, v2 and v represent the displacements in the axial, tangential and normal

directions, repectively as shown in Fig. 2. These are related to the displacement

components in cartesian coordinates by

Vl _--- Ul

dzv2=u2 +u3_

dz dy
v = ,_ - ,_

(7)

where ux, u2, and u3 denote the displacements along the x, y and z coordinates,

respectively.

The energy density of the 2D elastic body is obtained in terms of 7,_z and po_ by

the following procedure.

The 3D energy is first minimized with respect to ei3. This is equivalent to satis-

fying Eq. (4). The result is

= min U = 1D°_'r_eo_e.r_ (8)0
c,k3 Z

where D °z_t represents the componcnts of the 2D moduli. The expressions for D °z_

are given in terms of E _t in the Appendix.

The strain eoa from Eq. (5) is substitutcd into Eq. (8). Alter integration of the

result over the thickness ( one obtains the encrgy of the shell • per unit middle

surface area

5



where
CO_ _ 1= - < D_ _ >

h

2

C_,_6= _= < D_ >

C_2_6 12 D_ 2
= h---_< >

and a function of _, say _(_), between pointed brackets is defined as an integral

through the thickness, viz.,

+h(,)/2
< >= J-h(s)/2 . (9)

For an applied external loading P_, the displacement field u, determining the

deformed state is the stationary point of the energy functional

I = / _dxds- / P_u_d.zds (10)

Asymptotical Analysls of the Shell Energy Functional

Zeroth-Order Approximation

Let A and E be the order of displacements and stiffness coefficients C _6, re-

spectively. Assume that the order of the external forces is

This assumption is shown later to be consistent with the equilibrium equations.

An alternative would be to assume the order of the external force as some quantity P

and derive the order of the displacements as pL2/Eh from an asymptotical analysis

of the energy functional.

For a thin-walled slender beam whose dimensions satisfy Eq. (1) the rate of change

of the displacements along the axial direction is much smaller than their rate of change

along the circumferential direction. That is, for each displacement component

azl << asl



Using Eq. (6) and assuming that d is of the same order as R, the order of magnitude

of the in-plane strains and curvatures is

Since 3'_i and PI_ are much smaller than 7_2, "/22 and pl2, pz2, respectively, their

contribution to the elastic energy is neglected.

By keeping the leading order terms in the strain_displacement relationships, Eq.

(6) can be written as
Or1

O½ v

_2_= 0--_+-_

1 Or1 (11)
Pl2 = 4R Os

02v 0 (v2)P_ = Os2 _ -g

The order of magmitude of the shell energy per unit area and the work done by

external forces is



Since P_u_ << _, the contribution of external forces is neglected.

functional takes the form

2I = fo z"J{4hC1212(7,2)2 + 4hC'2227,2"_22 + hCZ222(Tz2)2 + 4h2C1212712p12

+2h2C1222_l12P22 + 2h2C_]2_22p12 + h2C12222'_22P22

h3 ,.-,,1212r _,2 3 h"h ,-,1222

+ 3-,-,_ tp,_J+ -5-,-,_p,2p_+ ]sC_(P_)_}ds_

The energy

(12)

The integrand in Eq. (12) is a positive quadratic form, therefore the minimum of

the functional is reached by functions v, vl, and v2 for which712 = "yz2 = p12 = pz2 =

0. From Eq. (11) this corresponds to

'gv-.-2 = 0 (13)
Os

0v2 v

0-'7 + R = 0 (14)

Os2 Os = 0 (15).

The function v in Eqs. (14) and (15) should be single valued, i. e.

(ov) jov---7 T_d_= 0 (16)

The integral in Eq. (16) is performed along the cross sectional mid-plane closed con-

tour P. The length of contour F is denoted by l. The bar in Eq. (16) and in the

subsequent derivation denotes averaging along the closed contour P.

Equation (13) implies that vl is a function of x only, i.e.

vl = Vl(z) (17)

Integrate Eq. (15) to get
0v v_
0s R = -_o(x) (18)

where _(x) is an arbitrary function which is shown later to represent the cross sec-

tional rotation about the x-axis. Prom Eq. (16) and (18), one obtains the relation

between _a(x) and vs.

8



Substitute v from Eq. (14) into Eq. (18), to get the following second-order differential

equation for v2
0 0v2. v_

_s(R-_--s ) + _ = _o(x) (19)

To solve this equation, one has to recall the relations between the radius of curvature

R and the components y(s) and z(s) of the position vector associated with contour F

d2z 1 dy
ds 2 R ds

d2y 1 dz (20)
ds 2 R ds

It follows from Eq. (20) that _ and d, are solutions of the homogeneous form of Eq.

(19) and v2 = _o(x)r, is its particular solution. The general solution is therefore _ven

by

= Us(x) + U3(x)_ + _(x)_. (21)

where U2 and U3 are arbitrary functions of x. Substitute from Eq. (21) into Eq. (14)

to get

v = cr2(_) - u_(Z)_s - _(x)_ (22)

F):luations (17), (21) and (22) represent the curvilinear displacement field that mini-

mizes the zeroth order approximation of the shell energy. Using Eq. (7) the curvilinear

displacement field is written in Cartesian coordinates as

ul = U,(z)

_2= v2(z) - z_(x)

u3= v3(z) + y_(x)

The variables Ul(x), U_(x) and U3(x) represent the average cross-sectional transla-

tion while _(x) the cross-sectional rotation normally referred to in beam theory as

the torsional rotation. This displacement field corresponds to the zeroth-ordcr ap-

proximation and does not include bending behavior. For a centroidal coordinatc

system Ul(x), Us(x), U3(x) and _o(x) can be expressed as



rn

First-Order Approximation

A first-order approximation can be constructed by rewriting the displacement field

in Eqs. (17), (21) and (22)in the form

Vl = Ul(X ) Jr t/Jl(S,= )

v==v,(=)_+v,(=)_+_(=),..,+,,,,C,.=). (23)

v= v,(=)_- v,(=)_ - _(=),,+_(,,=)
where wl, w2 and w can be regarded as correction functions to be determined i_ased

on their contributions to the energy functional.

Substitute Eq. (23) into Eq. (6) to obtain the strains and curvatures in terms of

the displacement corrections
o (_W !

7]1 = 7n + Ox

o Ow2 Owl

2")'12 = 2_12 "1" _ nt- 2_12 , 2"_12 = 08

o 0W 2 W

7==7=+_= , "_== 0-T+_

o 02w

Pll = Pll "4- OX 2

o 02w 30w2 1 OWl

PI2 = P12 + OsOx 4R Ox + p12 , PI2 - 4R as

p22 = P_ + _2 , _ - Os 2 Os

where ?°o_ and p°o_ are the strains and curvatures corresponding to the zeroth-ordcr

approximation. These are expressed as

(24)

0

7_ =u;(z)

o d_ , dz2_,2= u_(z) + u;(=)_ + _,'(z),',,

• I0



* ,, dz ,, dy _ _"(x)rtp,, = u; - u;

;,2 = v;(x) + + -
0

P22 = 0

(25)

The prime in Eq. (25) denotes differentiation with respect to x. The order of w_
is a_(-Z--)" Among the new terms introduced by the function wi the leading ones are

denoted by superscript" in Eq. (24). By keeping their contribution over the other

terms, the energy functional can be represented by

where te..'-ms of order/a2h_t,-L-rff] or smaller such as

h P]2_12, h P12_22

are negle,__ed in comparison with the following terms

0 0 0 O.

%1"h2, %1"h2, %2"h2, _12522

of order ______2_Similarly, the contribution of the work done by external forces, P,w_, isL2;.
A2 d

neglected since its order is (Eh-p-(Z)) in comparison with the order of the remaining

terms m :.he energy functmnal (Eh_). Therefore in order to determine the functions
w, one b.a.s to minimize the functional

If the rind body motion is suppressed the solution is unique. The terms _, _22 are

essentie2 :o the uniqueness of the solution; however, their contribution to the energy
_2 h

is of order (Eh_._(-_)) and is consequently dropped. This aspect is discussed by

Berdichevsky and Misiura (1991) with regard to the accuracy of classical shell theory.

The she'." energy can therefore be represented by

j_OL / o oI = _(_/_,2"7t_ + 2_,_,_2_,O,O,O)dsdx (26)

It is wo.,..h noting that the bending contribution does not appear in Eq. (26). That

is, to the first order approximation the shell energy corresponds to a membrane state.

11



The first variation of the energyfunctional is

(2_12)6_-_s ] + 0--_22 k,--_-s + R) } dsdx (27)

Equation (27) can be written in terms of the shear flow N12 and hoop stress resultant

o¢ and N_ - _. The result isArm by recalling that Nl2 =

Set the first variation of the energy to zero, to obtain the following

ON;2
_0

Os

which result in

ONe2
_-_0

Os

Nm
_0

R

NI_ = constant (28)

and

N2_ = 0 (29)

This is similar to the classical solution of constant shear flow and vanishing hoop

stress. By setting Nm to zero thc energy density is expressed in terms of "h_ and ")q2

only

2(Pl = min 2_ = A(s)(7,1) 2 + 2B(s)7_13q2 + 0(s)(7_2) 2 (30)
"Y22

The variables A(s), B(s) and C(s) represent the axial, coupling and shear stiffnesses,

respectively. They are defined in terms of the 2D shell moduli in the Appendix.

Equation (30) indicates that, to the first order, the energy density function is

independent of functions w2 and w. That is the in-plane warping contribution to the

shell energy is negligible. The function wl however, can be determined from Eqs. (28)

and (30) and by enforcing the condition on w_ to be single valued as follows

0_ 1

Nl2 = O (2_q2) = 2 (B(s)_hl, + C(s)_[12) = constant (31)

12



Substitute the leadingterms from Eqs.(24) and (25) into Eq. (31) to get

2 BU_(x) + _C U_(x) + U_(x)_ x + _'(x)r_(s) + _ ] -" constant (32)

In deriving Eq. (32) the term B o_-_, has been neglected in comparison with !p.o,n,2" _s "

This is possible if IB I is less or of the same order of magnitude as C. For the

case when [B[ >> C additional investigation is needed. Since the elastic energy

is positive definite, B 2 < AC, and B could be greater than C only if A >> C. In

practical laminated composite designs [B[ < C, as the shear stiffness is greater than

the extension-shear coupling.

Equation (32) is a first-order ordinary differential equation in wl. The value of

the constant in the right hand side of Eq. (32) can be found from the single value

condition of function wl:

The solution of Eq. (32) is determined within an arbitrary function of x. This function

can be specified from various conditions. Each one yields a specific interpretation of

the variable [/1. For example if _'_ = 0 the variable U1 = V-T according to Eq. (23).

The choice of these conditions does not affect the final form of the 1D beam theory

and therefore will not be specified in this formulation. The result is the following

simple analytical solution of Eq. (32)

= - zV (x) + + (33)

where

B(s) 1 1

The area enclosed by contour F is denoted by A_ in Eq. (34).

(34)

The displacement field corresponding to the first correction is obtained by sub-

stituting Eq. (33) into Eq. (23) and dropping w2 and w since their contribution to

13



the shell energy is negligiblecomparedto wl. The result referred to as first-order

approximation is given by

,, = u,(_) - y(s)u;(=) - z(s)u;(=)+ a(s)_o'(=)+ g,(s)u;(=)

Displacement Field

0

The displacement field corresponding to the next correction is found in the same

way. A third correction can also be performed. However, subsequent corrections yield

only smaller terms, as shown in Badir (1992), and the displacement field converges

to the following expression

IJ l u,(=) - y(_)u;(:,:)- z(_)u;(:,:)+ c(_)_o'(:_)
+g,(_)u;(=)+ g=(s)u;'(=)+ g3(s)u;'(=)

,_ = u2(=)_ + u3(=)_ +._o(=),',,

v = u_(z)_ - u,(=)_ - _o(=),-,
where

(35)

(36)

]t is seen. from expressions (34) and (36) that G(s), g_(s), g2(s), and g3(s) are single-

valued functions, that is

C(O) = C(t) = g,(O) = 9,(1) = g_(O) = g_(l) = g3(O) = g3(Z) = 0

The expressions for the displacements v2, v and the first four terms in v_ arc

analogous to the classical theory of extension, bending and torsion of beams. The

additional terms 91(s)U_, g2(s)U_' and g3(s)U_' in the expression of vl in Eq. (35)

represent warping due to axial strain and bending. These new terms emerge natu-

rally in addition to the classical torsional related warping G(s)_'. They are strongly

14



influencedby the material's anisotropy,and vanish for materials that are either or-
thotropic or whosepropertiesare antisymmetric relative to the shell middle surface.
Theseout-of-planewarping functionswerefirst derivedby Armanios et al. (1991) for

laminated composites.

The contribution of out-of-plane warping was considered recently by Kosmatka

(1991). Local in-plane deformations and out-of-plane warping of the cross section

were expressed in terms of unknown functions. These functions were assumed to be

proportional to the axial strain, bending curvature and twist rate within the cross

section and were determined using a finite element modeling. In the present formula-

tion, the out-of-plane warping is shown to be proportional to the axial strain, bending

curvature and torsion twist rate. The functions associated with each physical behav-

ior are expressed in closed-form by gl(s) for the axial strain, g2(s) and gs(s) for the

bending curvatures and C(s) for the torsion twist rate.

Strain Field

The strain field is obtained by substituting Eq. (35) into Eq. (6) and neglecting

terms of smaller order in the shell energy. The result is

_,_,= u;(=)- y(_)v';'(:,:)-z(s)U_'(=)

2"y_2= -_c(s)_ + (s)- c(s) u_

- [b(s)y(s)- _c(s)] U_'

- [b(s)z(s)- _c(s)] U_'

(37)

'72_ = 0

It is worth noting that the vanishing of hoop stress resultant in Eq, (29) and hoop

strain in Eq. (37) should be interpreted as negligible contribution relative to other

parameters. The longitudinal strain "hi is a linear function of y and z. This result

was adopted as an assumption in the work of Libove (1988).

In deriving Eq. (37), higher order terms associated with G_0" in the energy func-

.... m comparison &_c_0'_astlonal have been neglected with C ( ) shown in Badir (1992).

This is possible if the following inequalities are satisfied

<<1 _ <<1
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Constitutive Relationships

Substitute Eq. (37) in the energy density, Eq. (:30), and integrate over s to get the

energy of 1D beam theory

fo f (38/
where

¢2 1 [c,,(ul)' + c,2(¢)' + c_(u3')_+ c.(vi')']=5
+c,2vi_' + c,,u;u_' + c,,u[u(l
+c23_'u_'+ c2,_,'u_'+ c3,v_'u_' (39)

Explicit expressions for the stiffness coefficients Cij (i, j = l, 4) are given in the

Appendix.

The constitutive relationships can be _a'itten in terms of stress resultants and kine-

matic variables by differentiating Eq. (39) with respect to the associated kinematic

variable or by relating the traction T, torsional moment Ms, and bending moments

M_ and M: to the shear flow and axial stress as follows

_<I>2
f N12r= (s)ds07 = / f _,,r,,(s)d_ds =

0,I,2

M_

(40)

The shear flow Nl2 is derived from the energy density in Eq. (31) and the axial stress

resultant N_ is given by

Aql = 0"h-"-_= A(s)Tll + B(s)712 (41)

and the associated axial and shear stresses are uniform through the wall thickness.

Substitute Eq. (37) into Eqs. (31) and (41) and use F_xt. (40) to get

Mz Cl2 Cz2 C23 C2,t ¢p'

M_ = C,_ C_ C33 C_ Ug
M_ C14 C2,t C:_ C44 U_'

(42)
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Equilibrium Equations

The equilibrium equations can be derived by substituting the displacement field

in Eq. (35) into the energy functional in Eq. (10) and using the prineiple of minimum

total potential energy to get

T_ + f P_ds=O

M"+ _ (P_y- P,,z)d_= 0

+ + =o (431M;

M" 0

where P_, P_ and Pz are surface tractions along the x, y and z directions, respectively.

One of the member of each of the following four pairs must be prescribed at the

beam ends :

T or Ul, M_ or _p, M_ or U], and Ms or U_ (44)

SUMMARY OF GOVERNING EQUATIONS

The development presented in this work encompasses five equations. The first, is

the displacement field given in 'Eel. (35). Its functional form was determined based

on an asymptotical expansion of shell energy. The associated strain field is given in

•Eel. (37) and the stress resultants in Eqs. (31), (zl0) and (41). The fourth, are the

constitutive relationships in F-x:l. (42) with the stiffness coefficients expressed as inte-

grals of material properties and cross sectional geometry in Eq. (56) of the Appendix.

Finally the equilibrium equations and boundary conditions are given in Eq. (43) and

(44), respectively.

In the present development the determination of the displacement field is essential

in obtaining accurate expressions for the beam stiffnesscs. A comparison of the derived

displacement field with results obtained by previous investigators is presented in the

following section.

COMPARISON OF DISPLACEMENT FIELDS
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The pioneeringwork of ReissnerandTsai (1972) is basedon devclopingan exact
solution to the governingequilibrium, compatibility and constitutive relationships
of shell theory. Closedas well asopen cross-sectionswereconsidered.The derived
constitutive relationshipsare similar to Eq. (42). However, the authors left to the
reader the derivation of the explicit expressionsfor the stiffness coefficients. This
may be the reasonfor their work to have beenoverlooked. Theseexpressionsare
important in identifying the parameterscontrolling the behavior and in performing
parametric designstudies. Fm'thermore,the explicit form of the displacementfield
helpsevaluateandunderstandpredictionsof other analytical and numericalmodels.

A number of assumptionswere adoptedin Reissnerand-Tsai's developmentre-
garding material propertiessuchas neglectingthe coupling betweenin-plane strains
and curvatureswhich canbe significant in anisotropic materials. It is important to
assessthe influenceof theseassumptionson the accuracy.This hasbeendonein the
presentwork by usinganasymptoticalexpansionof theshell energyandproving that
the coupling and curvaturescontributionsto the energyaresmall in comparisonwith
the in-plane contribution.

Mansfieldand Sobey(1979)and Libove (1988)obtained the beamfiexibilities re-
lating the stretching,twisting andbendingdeformationsto the appliedaxial load, tor-
sionaland bendingmomentsfor a specialorigin and axesorientation. They adopted
the assumptionsof a negligiblehoop stressresultant h_, and a membrane state in

the thin-walled beam section. Although they did not refer to the work of Reissner

and Tsai (1972), their stiffnesses coincide for the special case outlined in Reissner and

Tsai (1972). This special case rcfers to the one where the classical assumptions of

neglecting shear and hoop stresses and considering the shear flow to be constant is

adopted. However, one has to carry out the details to show this fact.

The work of Rehfield (1985) has been used in a number of composite applications.

Rehfield's displacement field is of the form

_1= u,(=) - v(s)[u_(=)- 2%Ax)]- z(s) [_;(z) - 2%,(z)] + g(s,z)

u2 = u2(=)- z(s)_(z) (45)

_3= v3(z) + _(s)_(_:)

where 3'= and "y=y are the transverse shear strains.

givcn as

9(s,=)= _(s)_'(_)
with

The warping function g(s, x) is

(46)

j_0 $G(s) = 2A, 1 - r.(7)dl" (47)
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A comparison of the displacement fields in Eq. (35) and (45) shows that the warp-

ing function in Rehfield's formulation comprises the torsional-related contribution

but does not include explicit terms that express the bending-related warping. The

torsional warping function G(s) in Eq. (34) is different from the function in Eq. (47).

The two expressions coincide when c = constant that is, when the wall stiffness and

thickness are uniform along the cross section circumference.

The torsional warping function in Eq. (47) was modified by Atilgan (1989) and

Rehfield and Atilgan (1989) as

(_(s) = fo" 1"2A" - r,(7-)] dr[7-_- c'
(48)

where

and

I

c, = A_s - _ (49)

[Ai, 1Als As6J = AIs
Am

A16 - A,2A_]
A22 (50)

The Aij in Eq. (50) are the in-plane stiffnesses of Classical Lamination Theory

(Jones (1975) and Vinson and Sierakowsld (1987)). They are related to the modulus

tensor by

, A12--< E 1122 > , A22-'-< E 22m >

, A2s=<E 'z22> , Ass-<E 12_2>

A comparison of the modified torsional warping function in Eq. (48) and G(s) in

Eq. (34) shows that they coincide for laminates with no extension-shear coupling

(< D n12 >=< D 12m >= 0, in Eq. (54) of the Appendix). For the case where the

through-the-thickness contribution is neglected in Eq. (54), this reduces to Azs =

Ass = O.

The warping function obtained by Smith and Chopra (1990, 1991) for composite

box-beams is identical to the expression of Rehficld and Atilgan (1989) and Atilgan

(1989) given in Eqs. (46) and (48).

An assessment of all the previous warping expressions can be made by checking

whether they reduce to the exact expression for isotropic materials (see, for example,
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Mc_,son (1990))

= ff [2A - r.(z)]dT

with
1

c2 =  hCs)

where # is the shear modulus.

(51)

For isotropic materials the in-plane coupling b is zero and consequently 9t, g2 and

gz in Eqs. (34) and (36) vanish. That is the warping is torsion-related and reduces

to G(s)_'. Moreover, the shear parameter c is equal to _ and the expressions for

G(s) and G(s) in Eqs. (34) and (51) coincide.

Rehfield's warping function in Eq. (47) coincides with Eq. (51) when the material

properties and the thickness are uniform along the wall circumference. Atilgan's

(1989), Rehfield and Atilgan's (1989), and Smith and Chopra's (1991) formulations

reduce to Eq. (51) for isotropic materials.

APPLICATIONS

Two special layups: the circumferentially uniform stiffness (CUS) and circumfer-

entially asymmetric stiffness (CAS) have been considered by Atilgan (1989), Rehfield

and Atilgan (1989), Hodges et aI. (1989), Rehfield et al. (1990), Chandra el al.

(1990), and Smith and Chopra (1990, 1991).

CUS Configuration

This configuration produces extension-twist coupling. The axial, coupling and

in-plane stiffnesses A, B, and C given in Eq. (53) of the Appendix are constant

throughout the cross section, and hence the name circumferentially uniform stiffness

(CUS) was adopted by Atilgan (1989), Rehfield and Atilgan (1989), Hodges et al.

(1989), and Rehfield et al. (1990). For a box-beam, the ply lay-ups on opposite

sides are of reversed orientation, and hence the name antisymmetric configuration

was adopted by Chandra et al. (1990), and Smith and Chopra (1990,1991).

Since A, B, and C are constants, the stiffness matrix in Eq. (42), for a centroidal
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coordinate system,reducesto

C,, C,2 0 0

C,2 C22 0 0

0 0 C33 0

0 0 0 C44

The nonzero stiffness coefficients are given by

Cn = Al

C12 = BA,

C 2

B 2

C33 - A / z2 ds- -_- / z2 ds

C44= A / y2ds - -B-c-/ Y2ds

(52)

For such a case the out-of-plane warping due to axial strain vanishes and g_ does

not affect the response.

CAS Configuration

This configuration produces bending-t_ist coupling. The stiffness A is constant

throughout the cross section. For a box beam, the coupling stiffness, B in opposite

members is of opposite sign and hence the name circumferentially asymmetric stiff-

ness (CAS) was adopted by Atilgan(1989), Rchfield and Atilgan(1989), Hodges et

a/.(1989), and Rehfield el al.(1990). For a box-beam, the ply lay-ups along the hori-

zontal members are mirror images, and hence the name symmetric configuration was

adopted by Chandra et al.(1990), and Smith and Chopra(1990,1991). The stiffness

C in opposite members is equal. The stiffness matrix, for a centroidal system of axes,

reduces to
C11 0 0 0

0 C_2 C_3 0
0 C_3 C33 0
0 0 0 C44

The nonzero stiffness coefficients are expressed by

B?
Cll = AI- 2-'d

.C,

0
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Table 1: Properties of T300/5208 Graphite/Epoxy

E1z = 21.3 Msi

Em= E_ - 1.6 Msi

Gl2 = GI3 = 0.9 Msi

G23 = 0.7 Msi

vl2 = vl3 = 0.28

vz_ = 0.5

C$ 2

C23 = 2 [d +B_ c, 2

},,_ A.
B_d _

C44 = A / y=ds 6Ct

Subscripts t and v denote top and vertical members, respectively. The box width

and height are denoted by d and a, respectively. For the CAS configuration and with

reference to the Cartesian coordinate system in Fig. 1, bending about the y-axis is

coupled with torsion while extension and bending about the z-axis are decoupled.

In order to assess the accuracy of the predictions the present theory is applied to

the box beam studied by Hodges el al. (1989). The cross sectional configuration is

shown in Fig. 3 and the material properties in Table 1.

Flexibility Coefficients

A comparison of the flexibility coefficients S_j with the predictions from two models

is provided in Table 2. Thc flexibility coefficients S,j are obtained by invcrting the

4 x 4 matrix in Exl. (42). The NABSA (Nonhomogeneous Anisotropic Beam Section

Analysis) is a finite clement model bascd on an extension of the work of Giavotto
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Table 2: Comparison of Flexibility Coefficients of NABSA, TAIL and Present

(lb,in units)

Fiexibility

Sl, x i0s
5'22 x 104

$1_ × l0 s

$3_ x 104

$44 x 105

NABSA

0.143883

0.312145

-0.417841

0.183684

0.614311

PRESENT % Diff.

0.14491 +0.7

0.32364 +3.6

-0.43010 +2.9

0.1886 +2.6

0.63429 +3.2

TAIL %Diff.

0.14491 +0.7

0.32364 +3.6

-0.43010 +2.9

0.17294 -5.8

0.50157 -18.4

Table 3: Geometry and Mechanical Properties of Thin-Walled Beam with [+1214 CUS

square cross-section

Length = 24.0 in.

Width = depth = 1.17 in.

Ply thickness = 0.0075 in.

En = E22 = Ea3 = 11.65 Msi

Gl2 = G13 = 0.82, G23 = 0.7 Msi

u,2 = u13 = 0.05, v23 = 0.3

et a/.(1983). In this model all possible types of warping are accounted for. The

TAIL model is based on the theory of Rehfield (1985) while neglecting the restrained

torsional warping. The predictions of the NABSA and TAIL models are prox'ided by

Hodges el al.(1989). The percentage differences appearing in Table 2 are relative to

the NABSA predictions. The present theory is in good agreement with NABSA. Its

predictions show a difference ranging from +0.7 to +3.6 percent while those based

on Rehfield's theory (1985) range from +3.6 to -18.4 percent.

The present theory is applied to the prediction of the tip deformation in a can-

tilevered beam made of Graphite/Epoxy and subjected to different types of load-

ing. The beam has a CUS square cross section _4th [+1214 lay-up. The geometry

and mechanical properties are given in Table 3. Comparison of results with the

MSC/NASTRAN finite element analysis of Nixon (1989) is provided in Table 4. The

MSC/NASTRAN analysis is based on a 2D plate model. The predictions of the

present theory range from -t-1.7 to -0.7 percent difference relative to the finite elc-

23



Table 4: MSC/NASTRAN and Present Solutions for a CUS Cantilevered Beam with

[+1214 Layups Subjected to Various Tip Load Cases

Tip Load Tip Deformation % Diff.

" NASTRAN Present

Axial Force (100 lb)

Axial Force (100 lb)

Torsional Moment (100 lb.in)

"l_ansverse Force (100 lb)

Axial Disp. : 0.002189 in. 0.002202 in.

Twist : 0.3178 deg. 0.32325 deg.

Twist : 2.959 deg. 2.998 deg.

Deflection : 1.866 in. 1.853 in.

+0.6 %
+1.7 %

+1.32 %

-0.7 %

Table 5: Cantilever Geometry and Properties

Width = 0.953 in.

Depth = 0.53 in.-

Ply thickness = 0.005 in.

En = 20.59 Msi, E22 = Ea3 = 1.42 Msi

G]_ = G13 = 0.87 Msi, G_a = 0.7 Msi

v12 = v13 = 0.42, v2a = 0.5

ment results.

For a CUS configuration, the extension-torsional response is decoupled from bend-

ing. Since C is constant and gl does not affect the stiffness coefficients, the flexibility

coefficients controlling extension and t_ist response, Sll, Sl2 and $22 coincide with

those of Atilgan (1989), and Rehfield and Atilgan (1989). As a consequence, the ax-

ial displacement and twist angle predictions coincide. However, the lateral deflection

under transverse load differs. The tip lateral deflection predicted using the theory of

Rehfield (1985), and Atilgan (1989), and Rehfleld and Atilgan (1989), is 1.724 inch

resulting in -7.6 percentage difference compared to the NASTRAN result.:

The test data appearing in the comparisons of Figs. 4-9, are reported by Chandra

el al. (1990), and Smith and Chopra (1990, 1991). Figures 4 and 5 show the bending

slope variation along the beam span for antisymmetric and symmetric cantilevers

under a 1 lb transverse tip load. The beam geometry and material properties arc

given in Table 5. The analytical predictions reported by Chandra et al. (1990), and

Smith and Chopra (1990, 1991) together with results obtained on the basis of the
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analysesof Rehfield (1985),Rehfield and Atilgan (1989), Atilgan (1989), and the
present work arecombinedin Figs.4 and 5. Resultsshowthat the predictions of the
present theory are the closestto the test data whencomparedto the other analytical
approaches.

The bendingslopein Figs.4 and 5is definedin terms of the crosssectionrotation
for theories including sheardeformation. For the geometry and material properties
considered,this effectis negligibleasshownin Figs. 4 and 5 wherethe spanwiseslope
at the fixed end predictedby theorieswith shear deformation, is indistinguishable
from zero. Thenonzerovalueshownby the test data may be due to the experimental
set up usedto achieveclampedend conditions.

The spanwisetwist distribution of symmetric cantileveredbeam with [30]6and
[45]6lay-ups is plotted in Figs. 6 and 7, respectively. The beamsare subjected to
a transversetip load of 1 lb. Their dimensionsand material properties are given in
Table 5. Resultsshowthat the presenttheory and the worksof Rehfieldand Atilgan
(1989) and Atilgan (1989)are the closest to the test data. A similar behavior is
found for the bendingslopeand the twist angleat the mid-span of the symmetric
cantilevered beamsappearingin Figs. 8 and 9. The beams are subjected to a tip
torque of 1 lb-in.

CONCLUSION

An anisotropic thin-walled closed section beam theory has been developed based

on an asymptotical analysis of the shell energy functional. The displacement field

is not assumed apriori and emerges as a result of the analysis. In addition to the

classical out-of-plane torsional warping, two new contributions are identified namely,

axial strain and bending warping. A comparison of the derived governing equations

confirms the theory developed by Reissner and Tsai. In addition, explicit closed-form

expressions for the beam stiffness coemcients, the stress and displacement fields arc

provided. The predictions of the present theory have been validated by comparison

with finite element simulation, other closed form analyses and test data.
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APPENDIX

In this appendix explicit expressions for some of the relevant variables used in the

development as well as the stiffnesses Cij (i, j = 1, 4) in Eq. (42) are provided.

The three stiffness parameters A, B and C in Eq. (30) are expressed in terms of

the Hookean tensor E _jkl as follows

(< /)!122 >)2

A(s) =< D 1111 > 02222< >

< D_m >< D1222 >) (53)B(s) = 2 < D 1112 > -
< D 2222 >
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/

C(s) = 4 [< D nt2
>

The 2D Young's modu]i D "_6 are given by

where

D,*_6 = L-_6 E_anE _633
E3333

H_,_G°_" G _+_

Ec=#33 Ep.333
G_a.= E_ 3

E3333

II

Combining Eq. (34) and (53) the _-ariables b and c can be written as

< D 1112 > <D2222>

< D 1212 > -- <D2_22 >

b(s) =

(54)

and
1

(<0,_2_>_ (55)
c(s)= 4 (< D '2'2> - <D_222> )

where the pointed brackets denote integrationover the thickness as defined in Eq.

(o).

Expressions for the stiffness coefficients Cij (i, j = 1, 4) in terms of the cross

section geometry and matcrials properti_ are as follows

B2C1_ = (A - --c)ds
[f (S/C)ds] _+

§ (1/C)ds

!
C,_= _ A_.. f(/c) s

B 2
C_3 = - / (A - -6-)zds f (Z/C)ds f (B/C)zdsf (]/C)d_

B 2 f (B/C)ds f (B/C)yds

Cl, = - fl (A - .--_-)yds- f (Z/C)ds

1
2

C22 = _ (1/C.dsA.)

(B/C)zds A
= t/-7-t-Tz+

(56)
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f (B/C)ydsA.

(B/C) zds] 2

_OIC)ds

B 2 _ (B/C)yds j_ (B/C)zds

c_, = _ (m- -_)yzds + _O/C)ds

(B/C)y_]_
c,, = _ (A- B")y_ +

c _(_lC)_.I

3O
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Figure 1: Cartesian Coordinate System

Figure 2: Curvilinear Coordinate System

Figure 3: Beam Cross Section

Figure 4: Bending Slope of an Anti-Symmetric [1516 Cantilever Under 1 lb Transverse

Tip Load

Figure 5: Bending Slope Of a Symmetric [30]6 Cantilever Under 1 lb Transverse Tip

Load

Figure 6: Twist of a Symmetric [30Is Cantilever Under 1 lb Transverse Tip Load

Figure 7: Twist of a Symmetric [45]s Cantilever Under 1 lb Transverse Tip Load

Figure 8: Bending slope at mid-span under unit tip torque of Symmetric lay-up

Cantilevcr beams

Figure 9: Twist at mid-span under unit tip torque of Symmetric lay-up Cantilevcr

beams
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